Fast Correlation Method for Partial Fourier and Hadamard Sensing Matrices in Matching Pursuit Algorithms

نویسندگان

  • Kee-Hoon Kim
  • Hosung Park
  • Seokbeom Hong
  • Jong-Seon No
چکیده

SUMMARY There have been many matching pursuit algorithms (MPAs) which handle the sparse signal recovery problem, called compressed sensing (CS). In the MPAs, the correlation step makes a dominant computational complexity. In this paper, we propose a new fast correlation method for the MPA when we use partial Fourier sensing matrices and partial Hadamard sensing matrices which are widely used as the sensing matrix in CS. The proposed correlation method can be applied to almost all MPAs without causing any degradation of their recovery performance. Also, the proposed correlation method can reduce the computational complexity of the MPAs well even though there are restrictions depending on a used MPA and parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Correlation Computation Method for Matching Pursuit Algorithms in Compressed Sensing

There have been many matching pursuit algorithms (MPAs) which handle the sparse signal recovery problem a.k.a. compressed sensing (CS). In the MPAs, the correlation computation step has a dominant computational complexity. In this letter, we propose a new fast correlation computation method when we use some classes of partial unitary matrices as the sensing matrix. Those partial unitary matrice...

متن کامل

YAMPA: Yet Another Matching Pursuit Algorithm for Compressive Sensing

State-of-the-art sparse recovery methods often rely on the restricted isometry property for their theoretical guarantees. However, they cannot explicitly incorporate metrics such as restricted isometry constants within their recovery procedures due to the computational intractability of calculating such metrics. This paper formulates an iterative algorithm, termed yet another matching pursuit a...

متن کامل

Fast Greedy Approaches for Compressive Sensing of Large-Scale Signals

Cost-efficient compressive sensing is challenging when facing large-scale data, i.e., data with large sizes. Conventional compressive sensing methods for large-scale data will suffer from low computational efficiency and massive memory storage. In this paper, we revisit well-known solvers called greedy algorithms, including Orthogonal Matching Pursuit (OMP), Subspace Pursuit (SP), Orthogonal Ma...

متن کامل

Alternating Direction Algorithms for 1-Problems in Compressive Sensing

In this paper, we propose and study the use of alternating direction algorithms for several 1-norm minimization problems arising from sparse solution recovery in compressive sensing, including the basis pursuit problem, the basis pursuit denoising problems of both unconstrained and constrained forms, and others. We present and investigate two classes of algorithms derived from either the primal...

متن کامل

Performance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching

Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEICE Transactions

دوره 97-A  شماره 

صفحات  -

تاریخ انتشار 2014